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Cherenkov Radiation Emission in uniaxial optical materials
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Abstract. We report a theoretical study of the Cherenkov radiation emission in uniaxial optical materials.
The formalism is based on the previous work of Muzicar (1961) whose results in terms of energetic properties
of the emitted waves are corrected. This formalism is used to predict the Cherenkov radiation emission in
a strongly birefringent sodium nitrate crystal (NaNO3).

PACS. 41.60.Bq Cherenkov radiation – 42.25.Lc Birefringence

1 Introduction

Cherenkov radiation in an isotropic medium is well under-
stood and used in high energy physics detectors. It was
discovered in 1934 by Cherenkov [1] who observed that
pure sulfuric acid in a platinum crucible close to a radium
source emitted a weak blue radiation. All the following
observations revealed that a charged particle moving in a
transparent and isotropic medium of index of refraction n,
with a velocity V = cβ larger than the phase velocity of
light in that medium, emits this new radiation in a well-
defined direction which only depends on the product βn.
The radiation spectrum was found to be continuous and
concentrated mainly in the blue-violet part of the spec-
trum. In 1937, Tamm and Frank [2] developped a theory
on the basis of classical electrodynamics which completely
explained the properties of this radiation.

A first theoretical study of the Cherenkov radiation in
anisotropic media was due to Ginzburg [3] in 1940. A com-
plete theory was then obtained in 1956 by Pafomov who
extensively sudied the Cherenkov radiation. He investi-
gated the case of the Cherenkov emission in anisotropic
ferrites [4] and transposed his results for anisotropic di-
electrics. He showed that, in the general case of a fast
charged particle moving in an arbitrary direction in an
uniaxial optical material, there should exist two noncircu-
lar conical surfaces, which correspond to the ordinary and
extraordinary waves. The intensity distribution over these
surfaces should not be uniform owing to the polarization
features of the radiations.

Zrelov experimentally confirmed in 1964 [5] the geo-
metrical properties of the cones in the two special cases
of a particle travelling along the optical axis of the ma-
terial or perpendicularly to it. As far as we know, the
only experimental verification of the energetic properties
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of the radiation was carried out in 1965 by Gföller [6], who
studied the Cherenkov radiation emitted by a 32P 1.71
MeV β source in a strongly anisotropic NaNO3 plate. He
found 15% less total emitted intensity for a particle mov-
ing perpendicularly to the optical axis than for a particle
moving along this axis. This observation is well explained
in Pafomov’s theory. But we found that the correspond-
ing formulæ, when applied to an isotropic medium, give a
number of emitted photons which erroneously depends on
the choice of the reference axis.

Another approach was due to Muzicar [7] and led to
the same conclusions concerning the geometrical proper-
ties of the two cones and the intensity of the ordinary
wave. But his conclusions are different from those of
Pafomov regarding the intensity distribution of the ex-
traordinary wave. Moreover, he found the same total num-
ber of photons whatever the angle between the particle
motion and the optical axis, not in agreement with the
measurement of Gföller.

We present the complete properties of these Cherenkov
cones the same way as Muzicar did. The new result con-
cerns the number of extraordinary photons, which is now
in agreement with Gföller and successfully applied to the
isotropic case.

2 Basic formula and notations

Let a point charged particle move in an uniaxial material
with a constant velocity v = cβ (c is the velocity of light
in vacuum), and in a direction defined by a unit vector r.
We choose a coordinate system {x1,x2,x3} with x1 along
the optical axis c and x2 in the (r, c) plane (see Fig. 1). In
this system, r is defined by r1 = cos(χ), r2 = sin(χ) and
r3 = 0. The dielectric tensor is diagonal with ε11 = εe = n2

e

and ε22 = ε33 = εo = n2
o, where no and ne are the ordinary

and extraordinary refractive indices. The two eigenstates
of propagation [8], the ordinary and extraordinary waves,
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Fig. 1. Coordinate system and main notations.

can be simultaneously emitted, and the total number of
Cherenkov photons emitted d2N by each wave, per path
length dl and per energy dE, is given by the following
formula [3]:

d2N

dldE
=

αc3

2π~µ

∫ 4π

0

(e · r)2

v4
p

δ

(
r · u−

vp

cβ

)
du (2.1)

where:

- α is the fine structure constant;
- µ (= 1 in the following study) is the scalar magnetic

permittivity of the medium;
- du is an element of solid angle;
- u is the unitary vector in the direction of the Cherenkov

wave phase propagation (u is the normal to the wave
front and is not necessarily the direction of the light
ray);

- e is a vector in the direction of the electric field;
- vp is the phase velocity of the emitted wave with:

v2
p =

c2

µ
e · d; (2.2)

- d is the unitary vector in the direction of the displace-
ment vector with:

u · d = 0. (2.3)

By definition:

- the two waves are orthogonally-polarized:

d(e) · d(o) = 0 (2.4)

- d and e are linked by the dielectric tensor:

di =
∑

εikek. (2.5)

We finally introduce in the (r, c) plane another unitary
vector k from which u is defined by its polar angle θ and
its azimutal angle ϕ:

u1 = k1 cos(θ)− k2 sin(θ) cos(ϕ)

u2 = k2 cos(θ) + k1 sin(θ) cos(ϕ) (2.6)

u3 = sin(θ) sin(ϕ).

3 Properties of the ordinary wave

By definition, the displacement vector d(o) of the ordinary
wave is perpendicular to the optical axis c. By using equa-
tion (2.3), and u2

2 + u2
3 = 1 − u2

1, we find d(o) and then
e(o) by equation (2.5):

d(o) =
1√

1− u2
1

∣∣∣∣∣∣
0
u3

−u2

(3.1)

e(o) =
1

n2
o

√
1− u2

1

∣∣∣∣∣∣
0
u3

−u2

(3.2)

v(o)
p =

c

no
· (3.3)

Since v
(o)
p is constant, by equation (2.1) then shows that

the ordinary photons are emitted on a circular cone θ(o)

defined by r · u = cos(θ(o)) with:

cos(θ(o)) =
1

noβ
(3.4)

and the refractive index seen by the ordinary wave is:

n(o) =
c

v
(o)
p

= no. (3.5)

As in an isotropic medium, the symmetry axis of this cone
is r and the particule must move faster than the critical
speed βc

(o)c with:

βc
(o) =

1

no
· (3.6)

The integration of equation (2.1) over the angle θ then
gives:

d2N (o)

dldE
=

α

2π~c

∫ 2π

0

r2
2u

2
3

1− u2
1

dϕ (3.7)

where u is defined by the relations (2.6) in which θ = θ(o)

and k = r.
We finally obtain, for an incident particle moving faster

than the critical speed, the number of ordinary photons
d3N (o) emitted per azimutal angle ϕ, energy dE and path
length dl:

d3N (o)

dldEdϕ
=

α

2π~c

×
sin2(θ(o)) sin2(χ) sin2(ϕ)

1−
(
cos(θ(o)) cos(χ)− sin(χ) cos(χ) sin(θ(o))

)2 ·
(3.8)
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Fig. 2. Ordinary electric field as the normal runs around the
cone.

Pafomov [4] and Ginzburg [3] obtained a similar expres-
sion in another coordinate system.

We must now calculate the total number of ordinary
photons by integrating equation (3.8) over the azimutal
angle ϕ. The result of this integration depends on the sign
of cos(χ)−cos(θ(o)) and we get two expressions, one when

the optical axis is inside the ordinary cone
(
χ ≤ θ(o)

)
and

the other when it is outside:

d2N (o)

dldE
=

α

~c
(1− cos(χ)) inside the cone (3.9a)

d2N (o)

dldE
=

α

~c
(
1− cos(θ(o))

)
outside the cone. (3.9b)

The polarization features of this wave are quite differ-
ent from those of the Cherenkov radiation in an isotropic
medium for which the electric field lies in the (r,u) plane.
By definition, the polarization of the ordinary wave lies in
the plane perpendicular to the optical axis, i.e. (x2,x3),
and is of course perpendicular to the photon motion u.
This is confirmed by equations (3.1) and (3.2), which show
that the electric field e forms a fan in this plane as the
normal runs around the cone (see Fig. 2).

The extreme values are obtained for electric fields lo-
cated in the two planes tangent to the cone and passing
through the optical axis. When the optical axis is inside
the cone, these planes do not exist and the polarization
vector fills the entire plane and draws a circle of radius
|e(o)| = 1

n2
o
. When the optical axis goes outside the cone(

χ ≥ θ(o)

)
, the electric field only draws a fan in this circle,

whose vertex angle 2η is found for |e(o)| minimum:

cos(η) =
1

sin(χ)

√
cos2(θ(o))− cos2(χ). (3.10)

The vertex angle of the fan is minimum for a particle mov-
ing perpendicularly to the optical axis where it is equal to

the ordinary Cherenkov angle θ(o). Note that e(o) is along
x3 for a photon emitted in the (x1,x2) plane (ϕ = 0◦ and
ϕ = 180◦).

4 Properties of the extraordinary wave

The displacement vector of the extraordinary wave d(e) is
perpendicular to d(o) (Eq. 2.4). Using equations (2.3) and
equation (3.1) we obtain:

d(e) =
1√

1− u2
1

∣∣∣∣∣∣
1− u2

1

−u1u2

−u1u3

(4.1)

e(e) =
1√

1− u2
1

∣∣∣∣∣∣∣∣∣∣∣

1− u2
1

εe
−u1u2

εo
−u1u3

εo

(4.2)

v(e)
p = c

√
1

n2
e

+

(
1

n2
o

−
1

n2
e

)
u2

1. (4.3)

The cone of normals of the extraordinary wave is defined

by the argument of the Dirac distribution r · u =
v(e)
p

cβ

in equation (2.1). We write this expression by means of
equation (2.6):

P cos2(θ) +Q sin2(θ) cos2(ϕ)

− 2[Ak1k2 − r1r2(k2
1 − k

2
2)] sin(θ) cos(θ) cos(ϕ) = R

(4.4)

with R =
1

n2
eβ

2

A =

(
r2
1 −

1

n2
oβ

2

)(
r2
2 −

1

n2
eβ

2

)
(4.5)

P = (k1r1 + k2r2)2 −

(
1

n2
o

−
1

n2
e

)
k2

1

β2

Q = (k2r1 − k1r2)2 −

(
1

n2
o

−
1

n2
e

)
k2

2

β2
·

The interpretation of the cone’s shape is simplified by
choosing k to vanish the term Ak1k2 − r1r2(k2

1 − k
2
2) in

equation (4.4). k is then the symmetry axis of the cone
and, as a unitary vector, is given by:∣∣∣∣∣∣∣∣∣∣∣∣

k1 = cos(θk) =
1
√

2

√
1 +

A√
A2 + 4r2

1r
2
2

k2 = sin(θk) =
1
√

2

√
1−

A√
A2 + 4r2

1r
2
2

·

(4.6)
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The Cherenkov angle θ(e), which is relative to k is:

cos(θ(e)) =

√
R−Q cos2(ϕ)

P −Q cos2(ϕ)
(4.7)

which means that the extraordinary cone has an elliptical
shape.

The critical speed is determined by θ(e) = 0 (or R =
P ):

βc
(e) =

1√
n2

o cos2(χ) + n2
e sin2(χ)

· (4.8)

For a particle moving at the critical speed βc
(e)c, the

Cherenkov radiation is emitted along a direction k dif-

ferent from r since tan(θk) =
(
ne

no

)2

tan(χ). Note that the

two cones never intercept, except when the optical axis
is tangent to the ordinary cone (χ = θ(o)) at ϕ = 180◦:
the two cones are then tangent to each other and to the
optical axis (θ(o) = θk for ϕ = 180◦). The optical axis is
then simultaneously inside or outside the two cones. The
index of refraction seen by an extraordinary photon now
depends on β, χ and ϕ:

n(e) =
c

v
(e)
p

=

[
1

n2
e

+

(
1

n2
o

−
1

n2
e

)
u2

1

]− 1
2

. (4.9)

Note that n(e) is equal to ne only in case of an isotropic
medium (no = ne) or for an extraordinary wave emitted
perpendicularly to the optical axis (u1 = 0). Furthermore,
in case of a particle moving along the optical axis (χ = 0)
the extraordinary cone is circular around the optical axis
(θk = 0), and the Cherenkov wave has the same geometri-
cal properties as the one emitted in an isotropic medium

of refractive index n
‖
(e) independant of ϕ:

cos(θ
‖
(e)) =

1

βn
‖
(e)

(4.7 bis)

n
‖
(e) = ne

√
1 +

1

β2

(
1

n2
e

−
1

n2
o

)
. (4.9 bis)

We now have to determine the number of emitted pho-
tons. For that purpose, we use the properties of the Dirac
distribution to find:

δ

(
r · u−

v
(e)
p

cβ

)
=

u · r δ
(
cos(θ)− cos(θ(e))

)√
(R−Q cos2(ϕ)) (P −Q cos2(ϕ))

(4.10)

and we can write the scalar product on the cone of normals
as:

r · e(e) =
u · r

n2
o

√
1− u2

1

(
r1β

2n2
ou · r− u1

)
. (4.11)

Fig. 3. Extraordinary displacement vector for a particule mov-
ing perpendicularly to the optical axis.

This leads, for an incident particle moving faster than
the critical speed, to the number of extraordinary pho-
tons d3N (e) emitted per azimutal angle dϕ, energy dE
and path length dl:

d3N (e)

dldEdϕ
=

α

2π~c

(
1

n2
oβ

2

)

×

−
1

u · rn2
oβ

2
+

1

1− u2
1

(
u · r

(
r2
1

n2
oβ

2
− 1

)
+ 2u2r1

)
√

(R−Q cos2(ϕ)) (P −Q cos2(ϕ))
·

(4.12)

Although this result gives the same number of photons
as the one given by Pafomov [4] in the two special cases
r1 = 1 (r ‖ c) and r1 = 0 (r ⊥ c), it is different in all the
other cases.

We have to integrate equation (4.12) over the azimutal
angle ϕ. After some calculations presented in Appendix
A, we find, like in the case of the ordinary wave, that this
number depends on the relative position of the optical axis
and the cone:

d2N (e)

dldE
=

α

~c

(
cos(χ)−

βc
(o)β

c
(e)

β2

)
inside the cone

(4.13a)

d2N (e)

dldE
=

α

~c

(
1−

βc
(e)

β

)
βc

(o)

β
outside the cone.

(4.13b)

The polarization of the extraordinary wave lies in the
plane defined by the photon and the optical axis, i.e.
(u, c). The parametric equations of the cone of polariza-
tion are rather complicated and Muzicar [7] gives the fol-
lowing estimate:

• If the optical axis is outside the cone, the polarization
vector d(e) is contained in a pyramid whose faces are
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Fig. 4. Extraordinary displacement vector for a particule mov-
ing along the optical axis.

the two tangent planes of the cone that pass through
the optical axis and the two planes passing through x3

and perpendicular to the generators of the cone which
lie in the plane (x1,x2) (ϕ = 0◦ and ϕ = 180◦) (see
Fig. 3).
• If the optical axis is inside the cone, the polarization

vector d(e) generates a cone of same axis k as the cone
of normals (see Fig. 4).

5 Total number of emitted photons

The expression of the total number of photons emitted
by a particle depends on the relative value of its speed β
with respect to the two critical speeds, the ordinary one
βc

(o) (Eq. (3.6)) and the extraordinary one βc
(e) (Eq. (4.8))

which depends on the angle χ:

• if β is smaller than the two critical speeds, no photon
is emitted.
• if β is greater than the two critical speeds, the two

cones are emitted and the total number of emitted
photons is the sum of equations (3.9) and (4.13) which
gives the same expression whether the optical axis is
inside or outside the cone:

d2N t

dldE
=

α

~c

(
1−

βc
(o)β

c
(e)

β2

)
(5.1)

• if β is between the two critical speeds, only one of
the two cones is emitted and the optical axis is always
outside the cone. For a negative (positive) material,
only the ordinary (extraordinary) cone is emitted and
the total number of photons is given by the equations
(3.9b) and (4.13b).

For a given angle χ, the total number of emitted pho-
tons increases with β. Note that the distribution presents
two kinks at the two critical speeds.

But, for a given speed β, the variation of N t with χ
depends on the relative value of β with respect to 1/ne

and 1/no:

• if β > 1
no

and β > 1
ne

, β is greater than the two crit-

ical speeds and N t is thus given by equation (5.1). It
decreases (increases) with χ for a negative (positive)
material from N t

‖ (χ = 0◦) down (up) to N t
⊥ (χ = 90◦)

given by:

N t
‖ =

α

~c

(
1−

1

n2
oβ

2

)
(5.2a)

N t
⊥ =

α

~c

(
1−

1

noneβ2

)
. (5.2b)

Note that N t
‖ is equal to the number of photons emit-

ted in an isotropic medium of refractive index no:

N t
isot(eV−1 mm−1) = 37 sin2(θ(o)) (5.3)

• for β between 1
no

and 1
ne

, a particular angle χ0 occurs
when βc

(e) = β:

sin(χ0) =

√√√√√√√
1−

1

n2
oβ

2

1−
n2

e

n2
o

· (5.4)

For a negative material, ordinary photons are always emit-
ted since β > βc

(o). N
t decreases with χ down to χ0 and is

given by equation (5.1) since the two cones are emitted.
Then, only ordinary photons are emitted (β < βc

(e)) and

N t is independant of χ (Eq. (3.9b)).
For a positive material, ordinary photons are never

emitted since β < βc
(o). No photons are emitted for χ ≤ χ0,

and then only extraordinary photons are emitted (β >
βc

(e)) with N t increasing with χ (Eq. (4.13b) since χ >

χ0 > θ(o)).
Our results are different from those of Muzicar who

made a mistake in the integration of equation (4.12) which
has also been misprinted. They are in agreement with the
observations of Gföller [6] who found N t

⊥/N
t
‖ ≈ 85% for

a 32P β source of 1.71 MeV (β = 0.954) since equation
(5.2) give N t

⊥/N
t
‖ = 85.2%. They are also successfully

applied to the isotropic case (no = ne) since equation
(5.1) reduces, whatever the angle χ, to the well-known for-
mula (5.3) of the classical Cherenkov theory in an isotropic
medium.

6 Cherenkov radiation emission in a NaNO3

crystal

As a numerical application, we choose the Cherenkov ra-
diation emission in a highly negative birefringent NaNO3
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Fig. 5. N t versus χ and β in a NaNO3 crystal.
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Fig. 6. N (o), N (e) and N t versus β in a NaNO3 crystal at
χ = 40◦.

crystal whose refractive indices are no = 1.61 and ne =
1.35 (at λ = 589.3 nm). Figure 5 shows the dependance of
the total number of emitted photons versus χ and β. Note
the location of the break angle line which runs from the
point (χ = 0◦, β = βc

(o)) to the point (χ = 90◦, β = βc
(e)).

The two next figures illustrate the dependance of N (o),
N (e), and N t versus β. When β increases, the two cones
open out and the optical axis can go inside them above the

break point speed β0 =
βc

(o)

cos(χ) . For cos(χ) > βc
(o), β0 < 1

and we can see the two regimes (Fig. 6 for χ = 40◦).
For cos(χ) < βc

(o), β0 > 1 and the optical axis is always

outside the cones (Fig. 7 for χ = 90◦). Note that β0 is
always greater than βc

(e) and that it has no effect on the

total number of emitted photons N t.
For the dependance of N (o), N (e), and N t versus χ,

we expect two interesting figures:

- for β > 1
ne

, there is no kink in the N t variation

(Fig. 8 for β = 1);

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1(o)
c

Particle motion  v/c

(e)
c

N
(e)

N
(o)

N  

N
t

t

Fig. 7. N (o), N (e) and N t versus β in a NaNO3 crystal at
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β = 0.68.

- for 1
no
< β < 1

ne
, there is a kink at χ = χ0 (Fig. 9 for

β = 0.68).

Finally, we used equations (3.8) and (4.12) to study
the shape of the cones in the case of a relativistic particle
(β = 1 ) for χ ≤ θ(o) and χ ≥ θ(o) (Fig. 10).
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°

ordinary
cone

°

extraordinary
cone

°

(o)

Fig. 10. Ordinary (gray) and extraordinary (black) cone
shapes for a relativistic particle moving at various angle χ in
a NaNO3 crystal (see details in text).

These figures are cross sections of the two cones in a
plane perpendicular to the direction of the particle r:

- the cross section of the ordinary cone for which r is the
symmetry axis, is the same circle whatever the angle
χ;

- the cross section of the extraordinary cone is an ellipse
whose center is slightly shifted from the symmetry axis
k of this cone, except when the two cones have the
same symmetry axis k = r for a particle moving along
or perpendicularly to the optical axis. In a NaNO3

crystal, the slight difference between the two symmetry
axes is not greater than 5 degree.

The energy of each cone is drawn as the thickness of
the cross sections: for the ordinary cone, a number pro-
portional to the amount of ordinary emitted photons is
added to the circular cross section of the cone, whereas
the corresponding number for the extraordinary cone is
substracted from its cross section.

The features of the obtained intensities are well ex-
plained by polarization considerations. The Cherenkov en-

ergy is proportional to the square of the scalar product
e · r (see Eq. (2.1)). No ordinary wave can thus be emit-
ted for a particle moving along the optical axis and for
photons emitted in the (r, c) plane. A special case occurs
when the particle moves at an angle equal to the ordinary
Cherenkov angle (Fig. 10 for χ = θ(o) = 51.6◦). The two
cones are then tangent to the optical axis and the ordi-
nary photons can be emitted at ϕ = 180◦ since they are
moving along the optical axis.

7 Conclusion

The Cherenkov radiation emission in uniaxial optical ma-
terials was extensively studied by Pafomov [4] in 1956 and
Muzicar [7] in 1961. These two articles unfortunately lead
to different results, especially in the most general case of a
particle moving at an arbitrary angle to the optical axis of
the material. We have developped a complete formalism
and corrected their erroneous conclusions about the ener-
getic properties. This formalism is in agreement with the
experiments previously done in the 60’s in the two special
cases of a particle moving along or perpendicularly to the
optical axis of the material: Zrelov [5] for the geometri-
cal properties of the Cherenkov cones and Gföller [6] for
their energetic properties. Our results have now to be ex-
perimentally verified for particles moving at an arbitrary
angle to the optical axis.
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S. Loucatos, J-P. Perroud, and P. Rebourgeard. The authors
are also grateful to J. Haissinski, P. Micolon and M. Spiro for
their constant support of the Optical Trigger project.

Appendix A

We present here the main stages of the integration of
equation (4.12) to derive the total number of extraordi-
nary emitted photons (Eq. (4.13)). It is exactly the way
Muzicar did, but his result for I1 is erroneous (T is false).

After some calculations, we can rewrite equation (4.12)
to get:

d2N (e)

dldE
=

α

2π~c

(
1

n2
oβ

2

)
{I1 + I2}

with:

I1 = −
1

n2
oβ

2

∫ 2π

0

dϕ

u · r
√

(R−Q cos2(ϕ)) (P −Q cos2(ϕ))

I2 =

∫ 2π

0

[
u · r

(
r2
1

n2
oβ

2
− 1

)
+ 2u2r1

]
dϕ

(1− u2
1)
√

(R−Q cos2(ϕ)) (P −Q cos2(ϕ))
·
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Using equation (3.4) to express u · r , and omitting terms
odd in cos(ϕ):

I1 = −
1

n2
oβ

2

∫ 2π

0

k1r1 + k2r2

R(k1r1 + k2r2)2 sin2(ϕ)− T cos2(ϕ)
dϕ

with:

T = (k1r1 + k2r2)2(Q−R) + (k2r1 − k1r2)2(P −R)

= −

(
r2
1

n2
eβ

2
+

r2
2

n2
oβ

2

)
and therefore:

I1 = −
2πno√

n2
o cos2(χ) + n2

e sin2(χ)
·

For I2 we get:

I2 = 2

∫ ∞
−∞

Uy2 + x

(Wy2 − 2iDy −M)(Wy2 + 2iDy −M)
dy

= 4

∫ ∞
−∞

ay + b

Wy2 − 2iDy −M
dy

with:

W = P − k2
1R

D = k1(P −R)

M = k2
1(P −R) + k2

2(Q−R) = r2
1 −

1

n2
oβ

2

U = W

(
M

n2
oβ

2
(k1r1 + k2r2) + 2k2r2

)
x =

M

n2
oβ

2

(
2r1D − (k1r1 + k2r2)M − 2

k2r2

n2
oβ

2

)
a =

UM + xW

4MDi

b = −
x

2M
·

The result of the integration is:

I2 =
4πi

W

1

z2 − z1
[(ib− az1)sign(z1)− (ib− az2)sign(z2)]

where iz1 and iz2 are the roots of (Wy2 − 2iDy −M):

z1,2 =

D ±
k2r2

noβ

W
·

z1 is positive but the sign of z2 depends on the relative
orientation of the optical axis and the ordinary cone of
normals. We finally get:

I2 = 2π cos(χ)n2
oβ

2

(
for cos(χ) ≤

1

noβ

)
I2 = 2πnoβ

(
for cos(χ) ≥

1

noβ

)
.
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